

Válvulas Stop® es marca registrada

B70.22.0-E VÁLVULAS STOP®

- Simplicidad
- Operación automática
- Ausencia de fallas
- Operación precisa

Finalidad

La Válvula Stop® se utiliza como válvula de protección de tuberías de presión contra las consecuencias de una ruptura accidental de la tubería de presión, cortando la alimentación de ésta.

Principio de operación

Un obturador móvil con desplazamiento libre encima de la entrada de la tubería de presión a ser protegida, es sometido al esfuerzo vertical de un flotador y de una aspiración para abajo proporcional al cuadrado del valor del caudal. Si el caudal soberpasa un determinado valor el equilibrio de las fuerzas es interrumpido y el obturador cierra la entrada de agua de la tubería de presión.

El cierrre del obturador ocurre igualmente cuando el nivel del estanque queda debajo del nivel normal.

El enchimiento de la tubería de presión es realizado obligatoriamente con caudal controlado por una válvula By-Pass. La apertura de la Válvula Stop[®] es automática cuando se llena la tubería.

Características

Em función del caudal máximo de la instalación, la válvula es escogida en la dimensión indicada en la tabla siguiente. Para caudales superiores, se pueden suministrar por pedido, Válvulas Stop® de mayor diámetro.

Regulación

La regulación de la carrera de apertura y del lastre de la pieza móvil permite el ajuste fácil y preciso del caudal de accionamiento de la Válvula Stop® en el valor deseado, el cual, en general, es 10% por encima del caudal nominal.

5		c
4	G C	D
P	F E 2	H _M
Ø A		

Diámetro	Caudal máx.	Pérdida de carga	Apertura máx.	
mm	l/s	cm	cm	
250	50	6	6	
315	90	8	8	
400	160	10	10	
500	280	12,5	12,5	
630	500	16	16	
800	900	20	20	
1000	1600	25	25	

Los niveles \mathbf{H}_{M} y \mathbf{H}_{m} deben ser informados en caso de consulta o solicitud de compra.

1 - Solera, 2 - Flotador, 3 - Cables de alineación, 4 - Vástago, 5 - Entrada de aire, 6 - Cámara de lastre.

 \mathbf{H}_{M} y \mathbf{H}_{m} : niveles de agua máximo y mínimo en régimen normal de operación.

Dimensiones de implantación

DN	Α	В	С	D	E	F	h	K _{min}	L _{min}
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
250	500	300	605	300	115	80	550	160	600
315	600	300	660	350	115	100	600	160	800
400	750	300	900	400	135	100	650	160	1000
500	900	300	1055	450	170	120	700	170	1250
630	1050	300	1205	500	195	150	750	170	1600
800	1300	400	1450	550	230	160	800	270	2000
1000	1600	500	1850	600	275	180	1000	330	2500

La altura G de la viga soporte depende de su modo de ejecución y debe ser informado en el momento de la solicitud. El esfuerzo máximo : $P \approx 10^4 (DN)^2 H_M$, donde: P en N, DN y H_M

